Mice lacking the intestinal peptide transporter display reduced energy intake and a subtle maldigestion/malabsorption that protects them from diet-induced obesity.

نویسندگان

  • Dominika Kolodziejczak
  • Britta Spanier
  • Ramona Pais
  • Judith Kraiczy
  • Tamara Stelzl
  • Kurt Gedrich
  • Christian Scherling
  • Tamara Zietek
  • Hannelore Daniel
چکیده

The intestinal transporter PEPT1 mediates the absorption of di- and tripeptides originating from breakdown of dietary proteins. Whereas mice lacking PEPT1 did not display any obvious changes in phenotype on a high-carbohydrate control diet (HCD), Pept1(-/-) mice fed a high-fat diet (HFD) showed a markedly reduced weight gain and reduced body fat stores. They were additionally protected from hyperglycemia and hyperinsulinemia. Energy balance studies revealed that Pept1(-/-) mice on HFD have a reduced caloric intake, no changes in energy expenditure, but increased energy content in feces. Cecal biomass in Pept1(-/-) mice was as well increased twofold on both diets, suggesting a limited capacity in digesting and/or absorbing the dietary constituents in the small intestine. GC-MS-based metabolite profiling of cecal contents revealed high levels and a broad spectrum of sugars in PEPT1-deficient mice on HCD, whereas animals fed HFD were characterized by high levels of free fatty acids and absence of sugars. In search of the origin of the impaired digestion/absorption, we observed that Pept1(-/-) mice lack the adaptation of the upper small intestinal mucosa to the trophic effects of the diet. Whereas wild-type mice on HFD adapt to diet with increased villus length and surface area, Pept1(-/-) mice failed to show this response. In search for the origin of this, we recorded markedly reduced systemic IL-6 levels in all Pept1(-/-) mice, suggesting that IL-6 could contribute to the lack of adaptation of the mucosal architecture to the diets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Intestinal Peptide Transporter PEPT1 Is Involved in Food Intake Regulation in Mice Fed a High-Protein Diet

High-protein diets are effective in achieving weight loss which is mainly explained by increased satiety and thermogenic effects. Recent studies suggest that the effects of protein-rich diets on satiety could be mediated by amino acids like leucine or arginine. Although high-protein diets require increased intestinal amino acid absorption, amino acid and peptide absorption has not yet been cons...

متن کامل

Y2Y4 receptor double knockout protects against obesity due to a high-fat diet or Y1 receptor deficiency in mice.

Neuropeptide Y receptors are critical regulators of energy homeostasis, but the functional interactions and relative contributions of Y receptors and the environment in this process are unknown. We measured the effects of an ad libitum diet of normal or high-fat food on energy balance in mice with single, double, or triple deficiencies of Y1, Y2, or Y4 receptors. Whereas wild-type mice develope...

متن کامل

Disturbed intestinal nitrogen homeostasis in a mouse model of high-fat diet-induced obesity and glucose intolerance.

The oligopeptide transporter peptide cotransporter-1 Slc15a1 (PEPT1) plays a major role in the regulation of nitrogen supply, since it is responsible for 70% of the dietary nitrogen absorption. Previous studies demonstrated that PEPT1 expression and function in jejunum are reduced in diabetes and obesity, suggesting a nitrogen malabsorption from the diet. Surprisingly, we reported here a decrea...

متن کامل

Resistance to Diet-Induced Obesity and Associated Metabolic Perturbations in Haploinsufficient Monocarboxylate Transporter 1 Mice

The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 (+/-) mice developed normally. However, when...

متن کامل

Mutation of the RIIbeta subunit of protein kinase A prevents diet-induced insulin resistance and dyslipidemia in mice.

The mechanisms by which obesity contributes to diabetic phenotypes remain unclear. We evaluated the role of protein kinase A (PKA) signaling events in mediating diabetes associated with obesity. PKA comprises two regulatory subunits and two catalytic subunits and is activated by cAMP. The RIIbeta regulatory subunit is abundantly expressed in adipose tissue and brain. Knockout mice lacking this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 304 10  شماره 

صفحات  -

تاریخ انتشار 2013